A dual-wavelength photopolymerization process is presented, allowing for the volumetric fabrication of complex geometries using a multistep process. The methacrylate-based resin contained 0.1 wt % camphorquinone/0.1 wt % ethyl 4-(dimethylamino) benzoate and 0.2 wt % bis[2-(ochlorophenyl)-4,5-diphenylimidazole] as photoinitiator (473 nm) and photoinhibitor (365 nm), respectively. The photoinitiator and photoinhibitor concentrations were optimized to allow for photocuring to full depth (4.6 mm) following an exposure time of 2 min solely by 473 nm light, but no curing occurred when 365 nm light was present due to photoinhibition. This resin was validated using one-step volumetric fabrication of two objects containing voids defined by the 365 nm irradiation region. Two more complex structures were printed in a step-by-step manner, relying on the dynamic control of the projection patterns of both 365 and 473 nm projectors, decreasing the print time from 20 min using a commercially available single wavelength resin printer to 2 min.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.