Evidence of protective role of Ultraviolet-B (UVB) radiation in reducing COVID-19 deaths
Moozhipurath, Rahul Kalippurayil, Kraft, Lennart and Skiera, Bernd 2020, Evidence of protective role of Ultraviolet-B (UVB) radiation in reducing COVID-19 deaths, Scientific Reports, vol. 10, no. 1, pp. 1-10, doi: 10.1038/s41598-020-74825-z.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
Evidence of protective role of Ultraviolet-B (UVB) radiation in reducing COVID-19 deaths
AbstractPrior studies indicate the protective role of Ultraviolet-B (UVB) radiation in human health, mediated by vitamin D synthesis. In this observational study, we empirically outline a negative association of UVB radiation as measured by ultraviolet index (UVI) with the number of COVID-19 deaths. We apply a fixed-effect log-linear regression model to a panel dataset of 152 countries over 108 days (n = 6524). We use the cumulative number of COVID-19 deaths and case-fatality rate (CFR) as the main dependent variables and isolate the UVI effect from potential confounding factors. After controlling for time-constant and time-varying factors, we find that a permanent unit increase in UVI is associated with a 1.2 percentage points decline in daily growth rates of cumulative COVID-19 deaths [p < 0.01] and a 1.0 percentage points decline in the CFR daily growth rate [p < 0.05]. These results represent a significant percentage reduction in terms of daily growth rates of cumulative COVID-19 deaths (− 12%) and CFR (− 38%). We find a significant negative association between UVI and COVID-19 deaths, indicating evidence of the protective role of UVB in mitigating COVID-19 deaths. If confirmed via clinical studies, then the possibility of mitigating COVID-19 deaths via sensible sunlight exposure or vitamin D intervention would be very attractive.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.