Deakin University
Browse

Concepts and dimensionality in modeling unsaturated water flow and solute transport

chapter
posted on 2004-01-01, 00:00 authored by J van Dam, G De Rooij, M Heinen, Francesco Stagnitti
Many environmental studies require accurate simulation of water and solute fluxes in the unsaturated zone. This paper evaluates one- and multi-dimensional approaches for soil water flow as well as different spreading mechanisms to model solute behavior at different scales. For quantification of soil water fluxes,Richards equation has become the standard. Although current numerical codes show perfect water balances, the calculated soil water fluxes in case of head boundary conditions may depend largely on the method used for spatial averaging of the hydraulic conductivity. Atmospheric boundary conditions, especially in the case of phreatic groundwater levels fluctuating above and below a soil surface, require sophisticated solutions to ensure convergence. Concepts for flow in soils with macro pores and unstable wetting fronts are still in development. One-dimensional flow models are formulated to work with lumped parameters in order to account for the soil heterogeneity and preferential flow. They can be used at temporal and spatial scales that are of interest to water managers and policymakers. Multi-dimensional flow models are hampered by data and computation requirements.Their main strength is detailed analysis of typical multi-dimensional flow problems, including soil heterogeneity and preferential flow. Three physically based solute-transport concepts have been proposed to describe solute spreading during unsaturated flow: The stochastic-convective model (SCM), the convection-dispersion equation (CDE), and the fraction aladvection-dispersion equation (FADE). A less physical concept is the continuous-time random-walk process (CTRW). Of these, the SCM and the CDE are well established, and their strengths and weaknesses are identified. The FADE and the CTRW are more recent,and only a tentative strength weakness opportunity threat (SWOT)analysis can be presented at this time. We discuss the effect of the number of dimensions in a numerical model and the spacing between model nodes on solute spreading and the values of the solute-spreading parameters. In order to meet the increasing complexity of environmental problems, two approaches of model combination are used: Model integration and model coupling. Amain drawback of model integration is the complexity of there sulting code. Model coupling requires a systematic physical domain and model communication analysis. The setup and maintenance of a hydrologic framework for model coupling requires substantial resources, but on the other hand, contributions can be made by many research groups.

History

Title of book

Unsaturated-zone modeling : progress, challenges and applications

Series

Wageningen UR frontis series ; v. 6

Chapter number

1

Pagination

1 - 36

Publisher

Kluwer Academic

Place of publication

Dordrecht, Netherlands

ISBN-13

9781402029189

ISBN-10

1402029187

Language

eng

Publication classification

B1 Book chapter

Extent

11

Editor/Contributor(s)

R Feddes, G de Rooij, J van Dam

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC