Growing self-organizing map for online continuous clustering
chapter
posted on 2009-01-01, 00:00authored byT Smith, Lakpriya Alahakoon
The internet age has fuelled an enormous explosion in the amount of information generated by humanity. Much of this information is transient in nature, created to be immediately consumed and built upon (or discarded). The field of data mining is surprisingly scant with algorithms that are geared towards the unsupervised knowledge extraction of such dynamic data streams. This chapter describes a new neural network algorithm inspired by self-organising maps. The new algorithm is a hybrid algorithm from the growing self-organising map (GSOM) and the cellular probabilistic self-organising map (CPSOM). The result is an algorithm which generates a dynamically growing feature map for the purpose of clustering dynamic data streams and tracking clusters as they evolve in the data stream.
History
Title of book
Foundations of computational intelligence volume 4