Deakin University
Browse

Methods for Improving Foot Displacement Measurements Calculated from Inertial Sensors

chapter
posted on 2024-10-10, 04:32 authored by Edgar Charry, Daniel LaiDaniel Lai
The use of inertial sensors to measure human movement has recently gained momentum with the advent of low cost micro-electro-mechanical systems (MEMS) technology. These sensors comprise accelerometer and gyroscopes which measure accelerations and angular velocities respectively. Secondary quantities such as displacement can be obtained by integration of these quantities, a method which presents challenging issues due to the problem of accumulative sensor errors. This chapter investigates the spectral evaluation of individual sensor errors and looks at the effectiveness of minimizing these errors using static digital filters. The primary focus is on the derivation of foot displacement data from inertial sensor measurements. The importance of foot, in particular toe displacement measurements is evident in the context of tripping and falling which are serious health concerns for the elderly. The Minimum Toe Clearance (MTC) as an important gait variable for falls-risk prediction and assessment, and therefore the measurement variable of interest. A brief sketch of the current devices employing accelerometers and gyroscopes is presented, highlighting the problems and difficulties reported in literature to achieve good precision. These have been mainly due to the presence of sensor errors and the error accumulative process employed in obtaining displacement measurements. The investigation first proceeds to identify the location of these sensor errors in the frequency domain using the Fast Fourier Transform (FFT) on raw inertial sensor data. The frequency content of velocity and displacement measurements obtained from integrating the inertial data using a well known strap-down method is then explored. These investigations revealed that large sensor errors occurred mainly in the low frequency spectrum while white noise exists in all frequency spectra. The efficacy of employing a band-pass filter to remove a large portion of these errors and their effect on the derived displacements is elaborated on. The cross-correlation of the FFT power spectra from a highly accurate optical measurement system and processed sensor data is used as a metric to evaluate the performance of the band-pass filter at several stages of the processing stage. The motivation is that a more fundamental method would require less computational demand and could lead to more efficient implementations in low-power and systems with limited resources, so that portable sensor based motion measurement system would provide a good degree of measurement accuracy.

History

Pagination

93-116

Open access

  • No

ISSN

2327-7033

eISSN

2327-7041

ISBN-13

978-1-61692-004-3

Language

eng

Publication classification

BN.1 Other book chapter, or book chapter not attributed to Deakin

Publisher

IGI Global

Place of publication

Hershey, Pa.

Title of book

BIOMEDICAL ENGINEERING AND INFORMATION SYSTEMS: TECHNOLOGIES, TOOLS AND APPLICATIONS

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC