Motion estimation is one of the major bottlenecks in real-time performance scalable video coding applications due to high computational complexity of exhaustive search. To address this, researchers so far focused on low-complexity motion estimation and rate-distortion optimization in isolation. Proliferation of power-constrained handheld devices with image capturing capability has created demand for much smarter approach where motion estimation is integrated with rate control such that rate-distortion-complexity optimization can be effectively achieved. It is indeed crucial to provide such performance scalability in motion estimation to facilitate complexity management in such devices. This chapter presents an overview of motion estimation. Beginning with an introduction to the importance of motion estimation, it systematically examines various motion estimation techniques and their strengths and weaknesses, focussing primarily on block-based motion search. It then examines the limitation of the existing techniques in accommodating performance scalability, introduces a promising approach, Distance-dependent Thresholding Search (DTS) motion search, to fill in this gap, and concludes with future research directions in the field. The authors suggest that the content of the chapter will make a significant contribution and serve as a reference for multimedia signal processing research at postgraduate level.