Haptic technology provides the ability for a system to recreate the sense of touch to a human operator, and as such offers wide reaching advantages. The ability to interact with the human's tactual modality introduces haptic human-machine interaction to replace or augment existing mediums such as visual and audible information. A distinct advantage of haptic human-machine interaction is the intrinsic bilateral nature, where information can be communicated in both directions simultaneously. This paper investigates the bilateral nature of the haptic interface in controlling the motion of a remote (or virtual) vehicle and presents the ability to provide an additional dimension of haptic information to the user over existing approaches [1-4]. The 3D virtual haptic cone offers the ability to not only provide the user with relevant haptic augmentation pertaining to the task at hand, as do existing approaches, however, to also simultaneously provide an intuitive indication of the current velocities being commanded.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E2 Full written paper - non-refereed / Abstract reviewed
Copyright notice
2008, IEEE
Editor/Contributor(s)
M Lin, A Steed, C Cruz-Neira
Title of proceedings
IEEE virtual reality 2008 : Reno, Nevada, USA, March 8-12, 2008 : proceedings