A hybrid neural classifier for dimensionality reduction and data visualization and its application to fault detection and classification of induction motors
conference contribution
posted on 2011-01-01, 00:00authored byM Nadjarpoorsiyahkaly, Chee Peng Lim
In this paper, a hybrid neural classifier combining the auto-encoder neural network and the Lattice Vector Quantization (LVQ) model is described. The auto-encoder network is used for dimensionality reduction by projecting high dimensional data into the 2D space. The LVQ model is used for data visualization by forming and adapting the granularity of a data map. The mapped data are employed to predict the target classes of new data samples. To improve classification accuracy, a majority voting scheme is adopted by the hybrid classifier. To demonstrate the applicability of the hybrid classifier, a series of experiments using simulated and real fault data from induction motors is conducted. The results show that the hybrid classifier is able to outperform the Multi-Layer Perceptron neural network, and to produce very good classification accuracy rates for various fault conditions of induction motors.