This paper presents a framework that uses ear images for human identification. The framework makes use of Principal Component Analysis (PCA) for ear image feature extraction and Multilayer Feed Forward Neural Network for classification. Framework are proposed to improve recognition accuracy of human identification. The framework was tested on an ear image database to evaluate its reliability and recognition accuracy. The experimental results showed that our framework achieved higher stable recognition accuracy and over-performed other existing methods. The recognition accuracy stability and computation time with respect to different image sizes and factors were investigated thoroughly as well in the experiments.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1 Full written paper - refereed
Copyright notice
2010, IEEE
Title of proceedings
TENCON 2010 : Proceedings of the 2010 IEEE Region 10 Conference