A new framework with similarity reasoning and monotone fuzzy rule relabeling for fuzzy inference systems
conference contribution
posted on 2013-01-01, 00:00authored byK Tay, L Pang, T Jee, Chee Peng Lim
A complete and monotonically-ordered fuzzy rule base is necessary to maintain the monotonicity property of a Fuzzy Inference System (FIS). In this paper, a new monotone fuzzy rule relabeling technique to relabel a non-monotone fuzzy rule base provided by domain experts is proposed. Even though the Genetic Algorithm (GA)-based monotone fuzzy rule relabeling technique has been investigated in our previous work [7], the optimality of the approach could not be guaranteed. The new fuzzy rule relabeling technique adopts a simple brute force search, and it can produce an optimal result. We also formulate a new two-stage framework that encompasses a GA-based rule selection scheme, the optimization based-Similarity Reasoning (SR) scheme, and the proposed monotone fuzzy rule relabeling technique for preserving the monotonicity property of the FIS model. Applicability of the two-stage framework to a real world problem, i.e., failure mode and effect analysis, is further demonstrated. The results clearly demonstrate the usefulness of the proposed framework.
History
Event
Fuzzy Systems. IEEE International Conference (2013 : Hyderabad, India)
Pagination
1 - 8
Publisher
IEEE
Location
Hyderabad, India
Place of publication
Piscataway, N.J.
Start date
2013-07-07
End date
2013-07-10
Language
eng
Publication classification
E1 Full written paper - refereed
Copyright notice
2013, IEEE
Title of proceedings
FUZZ-IEEE 2013 : Proceedings of the IEEE International Conference on Fuzzy Systems