Previous studies in speculative prefetching focus on building and evaluating access models for the purpose of access prediction. This paper investigates a complementary area which has been largely ignored, that of performance modelling. We use improvement in access time as the performance metric, for which we derive a formula in terms of resource parameters (time available and time required for prefetching) and speculative parameters (probabilities for next access). The performance maximization problem is expressed as a stretch knapsack problem. We develop an algorithm to maximize the improvement in access time by solving the stretch knapsack problem, using theoretically proven apparatus to reduce the search space. Integration between speculative prefetching and caching is also investigated, albeit under the assumption of equal item sizes.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
1999, IEEE
Title of proceedings
IPPS/SPDP 1999 : Proceedings of the 13th International Parallel Processing Symposium and 10th Symposium on Parallel and Distributed Processing