In this paper, a two-stage algorithm for vector quantization is proposed based on a self-organizing map (SOM) neural network. First, a conventional self-organizing map is modified to deal with dead codebooks in the learning process and is then used to obtain the codebook distribution structure for a given set of input data. Next, subblocks are classified based on the previous structure distribution with a prior criteria. Then, the conventional LBG algorithm is applied to these sub-blocks for data classification with initial values obtained via the SOM. Finally, extensive simulations illustrate that the proposed two-stage algorithm is very effective.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
2002, IEEE
Editor/Contributor(s)
Y Baozong, T Xiaofang
Title of proceedings
ICSP' 02 : 6th International Conference on Signal Processing proceedings