Accurately and quickly classifying high dimensional data using machine learning and data mining techniques is problematic and challenging. This paper proposes an efficient and effective technique to properly extract high level features from medical images using a deep network and precisely classify them using support vector machine. A wavelet filter is applied at the first step of the proposed method to obtain the informative coefficient matrix of each image and to reduce dimensionality of feature space. A four-layer deep belief network is also utilized to extract high level features. These features are then fed to a support vector machine to perform accurate classification. Comparative empirical results demonstrate the strength, precision, and fast-response of the proposed technique.