File(s) under permanent embargo
Adversarial camouflage: Hiding physical-world attacks with natural styles
conference contribution
posted on 2020-01-01, 00:00 authored by R Duan, Daniel Ma, Y Wang, J Bailey, A K Qin, Y YangDeep neural networks (DNNs) are known to be vulnerable to adversarial examples. Existing works have mostly focused on either digital adversarial examples created via small and imperceptible perturbations, or physical-world adversarial examples created with large and less realistic distortions that are easily identified by human observers. In this paper, we propose a novel approach, calledAdversarial Camouflage (AdvCam), to craft and camouflage physical-world adversarial examples into natural styles that appear legitimate to human observers. Specifically, AdvCam transfers large adversarial perturbations into customized styles, which are then “hidden” on-target object or off-target background. Experimental evaluation shows that, in both digital and physical-world scenarios, adversarial examples crafted by AdvCam are well camouflaged and highly stealthy, while remaining effective in fooling state-of-the-art DNN image classifiers. Hence, AdvCam is a flexible approach that can help craft stealthy attacks to evaluate the robustness of DNNs. AdvCam can also be used to protect private information from being detected by deep learning systems.