posted on 2002-01-01, 00:00authored byN F Xiao, Saeid Nahavandi
In this paper, an active stereo vision-based learning approach is proposed for a robot to track, fixate and grasp an object in unknown environments. First, the functional mapping relationships between the joint angles of the active stereo vision system and the spatial representations of the object are derived and expressed in a three-dimensional workspace frame. Next, the self-adaptive resonance theory-based neural networks and the feedforward neural networks are used to learn the mapping relationships in a self-organized way. Then, the approach is verified by simulation using the models of an active stereo vision system which is installed in the end-effector of a robot. Finally, the simulation results confirm the effectiveness of the present approach.
History
Pagination
584 - 587
Location
Bangkok, Thailand
Open access
Yes
Start date
2002-12-11
End date
2002-12-14
ISBN-13
9780780376571
ISBN-10
0780376579
Language
eng
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.