Many tasks in computer vision can be expressed as graph problems. This allows the task to be solved using a well studied algorithm, however many of these algorithms are of exponential complexity. This is a disadvantage when considered in the context of searching a database of images or videos for similarity. Work by Mesaner and Bunke (1995) has suggested a new class of graph matching algorithms which uses a priori knowledge about a database of models to reduce the time taken during online classification. This paper presents a new algorithm which extends the earlier work to detection of the largest common subgraph.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
1998, IEEE
Editor/Contributor(s)
A Jain, S Venkatesh, B Lovell
Title of proceedings
ICPR 1998 : Proceedings of the 14th International Conference on Pattern Recognition