In this paper, empirical results are presented which suggest that size and rate of decay of region size plays a much more significant role in the learning, and especially the development, of topographic feature maps. Using these results as a basis, a scheme for decaying region size during SOM training is proposed. The proposed technique provides near optimal training time. This scheme avoids the need for sophisticated learning gain decay schemes, and precludes the need for a priori knowledge of likely training times. This scheme also has some potential uses for continuous learning.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
1999, IEEE
Title of proceedings
IJCNN 1999 : Proceedings of the International Joint Conference on Neural Networks