posted on 2007-01-01, 00:00authored byJun Zhang, L Ye
Feature aggregation is a critical technique in content- based image retrieval systems that employ multiple visual features to characterize image content. In this paper, the p-norm is introduced to feature aggregation that provides a framework to unify various previous feature aggregation schemes such as linear combination, Euclidean distance, Boolean logic and decision fusion schemes in which previous schemes are instances. Some insights of the mechanism of how various aggregation schemes work are discussed through the effects of model parameters in the unified framework. Experiments show that performances vary over feature aggregation schemes that necessitates an unified framework in order to optimize the retrieval performance according to individual queries and user query concept. Revealing experimental results conducted with IAPR TC-12 ImageCLEF2006 benchmark collection that contains over 20,000 photographic images are presented and discussed.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
2007, IEEE
Editor/Contributor(s)
P Kellenberger
Title of proceedings
ISM 2007 : Proceedings of the Ninth IEEE International Symposium on Multimedia