Deakin University
Browse

File(s) under permanent embargo

Analysis of features selection for P2P traffic detection using support vector machine

conference contribution
posted on 2013-01-01, 00:00 authored by H A Jamil, Roozbeh Zarei, N O Fadlelssied, M Aliyu, S M Nor, M N Marsono
Network traffic classification plays a vital role in various network activities. Network traffic data include a large number of relevant and redundant features, which increase the flow classifier computational complexity and affect the classification results. This paper focuses on the analysis of different type of features selection algorithms in order to propose a set of flow features that are robust and stable to classify Peer-to-Peer (P2P) traffic. The process of validation and evaluation were done through experimentation on the traffic traces from special shared resources. The classification of P2P traffic is using Support Vector Machine (SVM) measurable in terms of its accuracy and speed. The experimental results indicate that P2P SVM classifier with reduced feature sets not only results in a higher computing performance (0.14 second for testing time), but also achieves high accuracy (92.6%).

History

Event

Information and Communication Technology. Conference (2013 : Bandung, Indonesia)

Series

Information and Communication Technology Conference

Pagination

116 - 121

Publisher

Institute of Electrical and Electronics Engineers

Location

Bandung, Indonesia

Place of publication

Piscataway, N.J.

Start date

2013-03-20

End date

2013-07-22

ISBN-13

9781467349925

Language

eng

Publication classification

E1.1 Full written paper - refereed

Copyright notice

2013, IEEE

Editor/Contributor(s)

[Unknown]

Title of proceedings

ICoICT 2013 : Smart system for the convergence of technology and services : Proceedings of the 2013 International Conference of Information and Communication Technology