Autonomous robot navigation system using the evolutionary multi-verse optimizer algorithm
Version 2 2024-06-04, 02:22Version 2 2024-06-04, 02:22
Version 1 2020-05-13, 14:41Version 1 2020-05-13, 14:41
conference contribution
posted on 2024-06-04, 02:22 authored by SMJ Jalali, Abbas KhosraviAbbas Khosravi, PM Kebria, R Hedjam, S Nahavandi© 2019 IEEE. The field of neuroevolution has received great attention in recent years due to its promising capability for developing well-performing models. It has been applied to many real-world problems ranging from medical diagnosis to autonomous robots. The choice of the evolutionary algorithm (EA) has a huge impact on the neuroevolution overall performance. Despite recent progress in the field, it is not clear what the best choice of EA is. The problem becomes more severe considering a dozen of EAs available for neuroevolution applications. In this paper, six state of the art EAs are applied for the task of autonomous robot navigation. These EAs are MultiVerse optimizer (MVO), moth-flame optimization (MFO), particle swarm optimization (PSO), cuckoo search (CS), Grey wolf optimizer (GWO) and bat algorithm. MLP networks are trained using these six evolutionary algorithms to solve the classification task related to the autonomous robot navigation. Comprehensive experiments are conducted using three datasets and obtained results are visually and statistically compared. To the best knowledge of the authors, comparison among the aforementioned algorithms has not been considered in the literature. It is found that neuroevolution methods perform well for the task of autonomous robot navigation. Amongst investigated EAs, MVOtrained achieves the highest and most consistent performance metrics.
History
Volume
2019-OctoberPagination
1221-1226Location
Bari, ItalyPublisher DOI
Start date
2019-10-06End date
2019-10-09ISSN
1062-922XISBN-13
9781728145693Language
engPublication classification
E1 Full written paper - refereedTitle of proceedings
SMC 2019 : Proceedings of the 2019 IEEE International Conference on Systems, Man and CyberneticsEvent
Systems, Man and Cybernetics. Conference (2019 : Bari, Italy)Publisher
IEEEPlace of publication
Piscataway, N.J.Usage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC