Deakin University
Browse

File(s) under permanent embargo

Bayesian Optimisation for Objective Functions with Varying Smoothness

conference contribution
posted on 2023-02-28, 03:36 authored by A V Arun Kumar, Santu RanaSantu Rana, C Li, S Gupta, Alistair ShiltonAlistair Shilton, Svetha VenkateshSvetha Venkatesh
Bayesian optimisation is a popular method in optimising complex, unknown and expensive objective functions. In complex design optimisation problems, the additional information about the smoothness, monotonicity or the modality of the unknown objective functions can be obtained either from the domain expertise or from the problem environment. Incorporating such additional information can potentially enhance the performance of the optimisation. We propose a methodology to incorporate the aforesaid extra information to have a better fitted surrogate model of the unknown objective function. Specifically, for Gaussian Process regression, we propose a covariance function to encompass varying smoothness across the input space through a parametric function whose parameters are tuned from the observations. Our experiments on both synthetic benchmark functions and real-world applications demonstrate that embodying such additional knowledge accelerates the convergence.

History

Volume

11919 LNAI

Pagination

460 - 472

ISSN

0302-9743

eISSN

1611-3349

ISBN-13

9783030352875

Title of proceedings

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Usage metrics

    Research Publications

    Categories

    No categories selected

    Keywords

    Exports