Creating a set of a number of neural network (NN) models in an ensemble and accumulating them can achieve better overview capability as compared to single neural network. Neural network ensembles are designed to provide solutions to particular problems. Many researchers and academicians have adopted this NN ensemble technique, especially in machine learning, and has been applied in various fields of engineering, medicine and information technology. This paper present a robust aggregation methodology for load demand forecasting based on Bayesian Model Averaging of a set of neural network models in an ensemble. This paper estimate a vector of coefficient for individual NN models' forecasts using validation data-set. These coefficients, also known as weights, are equal to posterior probabilities of the models generating the forecasts. These BMA weights are then used in combining forecasts generated from NN models with test data-set. By comparing the Bayesian results with the Simple Averaging method, it was observed that benefits are obtained by utilizing an advanced method like BMA for forecast combinations.
History
Event
IEEE Systems, Man and Cybernetics. Conference (2013 : Manchester, England)
Pagination
3192 - 3197
Publisher
IEEE
Location
Manchester, England
Place of publication
Piscataway, N.J.
Start date
2013-10-13
End date
2013-10-16
Language
eng
Publication classification
E1 Full written paper - refereed
Copyright notice
2013, IEEE
Title of proceedings
SMC 2013 : Proceedings of the 2013 IEEE International Conference on Systems, Man and Cybernetics