Deakin University
Browse

Bayesian model averaging of load demand forecasts from neural network models

conference contribution
posted on 2013-01-01, 00:00 authored by S Hassan, Abbas KhosraviAbbas Khosravi, J Jaafar
Creating a set of a number of neural network (NN) models in an ensemble and accumulating them can achieve better overview capability as compared to single neural network. Neural network ensembles are designed to provide solutions to particular problems. Many researchers and academicians have adopted this NN ensemble technique, especially in machine learning, and has been applied in various fields of engineering, medicine and information technology. This paper present a robust aggregation methodology for load demand forecasting based on Bayesian Model Averaging of a set of neural network models in an ensemble. This paper estimate a vector of coefficient for individual NN models' forecasts using validation data-set. These coefficients, also known as weights, are equal to posterior probabilities of the models generating the forecasts. These BMA weights are then used in combining forecasts generated from NN models with test data-set. By comparing the Bayesian results with the Simple Averaging method, it was observed that benefits are obtained by utilizing an advanced method like BMA for forecast combinations.

History

Event

IEEE Systems, Man and Cybernetics. Conference (2013 : Manchester, England)

Pagination

3192 - 3197

Publisher

IEEE

Location

Manchester, England

Place of publication

Piscataway, N.J.

Start date

2013-10-13

End date

2013-10-16

Language

eng

Publication classification

E1 Full written paper - refereed

Copyright notice

2013, IEEE

Title of proceedings

SMC 2013 : Proceedings of the 2013 IEEE International Conference on Systems, Man and Cybernetics

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC