Deakin University
Browse

File(s) under permanent embargo

Classification from a Riemannian graph embedding viewpoint

conference contribution
posted on 2016-01-01, 00:00 authored by Antonio Robles-KellyAntonio Robles-Kelly, Lin Gu, Ran Wei
In this paper, we employ graph embeddings for classification tasks. To do this, we explore the relationship between kernel matrices, spaces of inner products and statistical inference by viewing the embedding vectors for the nodes in the graph as a field on a Riemannian manifold. This leads to a setting where the inference process may be cast as a Maximum a Posteriori (MAP) estimation over a Gibbs field whereby the graph Laplacian can be related to a Gram matrix of scalar products. This not only allows for a better understanding of graph spectral techniques, but also provides a means for classifying nodes in the graph without the need to compute the embedding explicitly by using a Mercer kernel. We illustrate how the developments presented here can be used for purposes of classification, where we use the graph Laplacian as a kernel matrix. We present classification results on synthetic data and four UCI datasets. We also apply our method to real-world image labelling and compare our results to those yielded by alternatives elsewhere in the literature.

History

Pagination

3288-3295

Location

Vancouver, B.C.

Start date

2016-07-24

End date

2016-07-29

ISSN

2161-4407

ISBN-13

978-1-5090-0620-5

Language

eng

Publication classification

E1.1 Full written paper - refereed

Copyright notice

2016, IEEE

Editor/Contributor(s)

[Unknown]

Title of proceedings

IJCNN : Proceedings of the 2016 International Joint Conference on Neural Networks

Event

IEEE Computational Intelligence Society. Conference (2016 : Vancouver, B.C.)

Publisher

Institute of Electrical and Electronics Engineers

Place of publication

Piscataway, N.J.

Series

IEEE Computational Intelligence Society Conference

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC