Magnetic Resonance Imaging (MRI) is an important imaging technique. However, it is a time consuming process. The aim of this study is to make the imaging process ef?cient. MR images are sparse in the sensing domain and Compressive Sensing exploits this sparsity. Locally sparsi?ed Compressed Sensing is a specialized case of CS which sub-divides the image and sparsi?es each region separately; later samples are taken based on sparsity level in that region. In this paper, a new structured approach is presented for de?ning the size and locality of sub-regions in image. Experiments were done on the regions de?ned by proposed framework and local sparsity constraints were used to achieve high sparsity level and to reduce the sample set. Experimental results and their comparison with global CS is presented in the paper.