Zero-day (or unknown) traffic brings about challenges for network security and management tasks, in terms of identifying the occurrence of those events in the network in an accurate and timely manner. In this paper, we propose a distributed mechanism to detect such unknown traffic in a timely manner. We compare our distributed scheme with a centralized system, where all the network flow data are used as a whole to perform the detection. We combined supervised and unsupervised learning mechanisms to discover and classify the unknown traffic efficiently, using clustering and Random Forest (RF) based schemes for this purpose. Further, we incorporated the correlation information in the traffic flows to improve the accuracy of detection, by means of using a Bag of Flows (BoFs) based method. Evaluation on real traces reveal that our distributed approach achieves a comparable detection performance to that of a centralized scheme. Further, the distributed scheme that incorporates unknown sample sharing in the framework shows improvement in the zero-day traffic detection performance. Moreover, the classifier used with the combination of BoF and RF shows improved detection accuracy, compared with not using BoFs.