Spam is commonly defined as unsolicited email messages and the goal of spam filtering is to differentiate spam from legitimate email. Much work have been done to filter spam from legitimate emails using machine learning algorithm and substantial performance has been achieved with some amount of false positive (FP) tradeoffs. In this paper, architecture of spam filtering has been proposed based on support vector machine (SVM,) which will get better accuracy by reducing FP problems. In this architecture an innovative technique for feature selection called dynamic feature selection (DFS) has been proposed which is enhanced the overall performance of the architecture with reduction of FP problems. The experimental result shows that the proposed technique gives better performance compare to similar existing techniques.
History
Pagination
757-762
Location
Melbourne, Australia
Open access
Yes
Start date
2007-07-11
End date
2007-07-13
ISBN-13
9780769528410
ISBN-10
0769528414
Language
eng
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1 Full written paper - refereed
Copyright notice
2007, IEEE
Editor/Contributor(s)
Lee R, Chowdhury M, Ray S, Lee T
Title of proceedings
6th IEEE/ACIS International Conference on Computer and Information Science : (ICIS 2007) in conjunction with 1st IEEE/ACIS International Workshop on e-Activity (IWEA 2007) : proceedings : 11-13 July, 2007, Melbourne, Australia
Event
International Conference on Computer and Information Science (6th : 2007 : Melbourne, Australia)