This paper presents an efficient evaluation algorithm for cross-validating the two-stage approach of KFD classifiers. The proposed algorithm is of the same complexity level as the existing indirect efficient cross-validation methods but it is more reliable since it is direct and constitutes exact cross-validation for the KFD classifier formulation. Simulations demonstrate that the proposed algorithm is almost as fast as the existing fast indirect evaluation algorithm and the twostage cross-validation selects better models on most of the thirteen benchmark data sets.
History
Pagination
240 - 244
Location
Hong Kong, China
Open access
Yes
Start date
2006-08-20
End date
2006-08-24
ISSN
1051-4651
ISBN-13
9780769525211
ISBN-10
0769525210
Language
eng
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
2006, IEEE
Title of proceedings
ICPR 2006 : Proceedings of the 18th International Conference on Pattern Recognition