Post-nonlinear (PNL) causal models stand out as a versatile and adaptable framework for modeling intricate causal relationships. However, accurately capturing the invertibility constraint required in PNL models remains challenging in existing studies. To address this problem, we introduce CAF-PoNo (Causal discovery via Normalizing Flows for Post-Nonlinear models), harnessing the power of the normalizing flows architecture to enforce the crucial invertibility constraint in PNL models. Through normalizing flows, our method precisely reconstructs the hidden noise, which plays a vital role in cause-effect identification through statistical independence testing. Furthermore, the proposed approach exhibits remarkable extensibility, as it can be seamlessly expanded to facilitate multivariate causal discovery via causal order identification, empowering us to efficiently unravel complex causal relationships. Extensive experimental evaluations on both simulated and real datasets consistently demonstrate that the proposed method outperforms several state-of-the-art approaches in both bivariate and multivariate causal discovery tasks.
ECAI 2024 : Proceedings of the 27th European Conference on Artificial Intelligence - Including 13th Conference on Prestigious Applications and Intelligent Systems
Event
Artificial Intelligence. Conference (2024 : 27th : Santiago de Compostela, Spain)
Publisher
IOS Press
Place of publication
Amsterdam, The Netherlands
Series
Frontiers in Artificial Intelligence and Applications