Generally multiple objectives exist in transportation infrastructure management, such as minimum cost and maximum service capacity. Although solution methoak of multiobjective optimization problems have undergone continual development over the part several decades, the methods available to date are not particularly robust, and none of them perform well on the broad classes. Because genetic algorithms work with apopulation ofpoints, they can capture a number of solutions simultaneously, and easily incorporate the concept of a Pareto optimal set in their optimization process. In this paper, a genetic algorithm is modified to deal with an empirical application for the rehabilitation planning of bridge decks, at a network level, by minimizing the rehabilitation cost and deterioration degree simultaneously.
History
Pagination
1006 - 1011
Location
Jinan, China
Open access
Yes
Start date
2006-10-16
End date
2006-10-18
ISBN-13
9780769525280
ISBN-10
0769525288
Language
eng
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1 Full written paper - refereed
Copyright notice
2006, IEEE Computer Society
Editor/Contributor(s)
Y Chen, A Abraham
Title of proceedings
Engineering Management: An Empirical Application in Infrastructure Systems