File(s) under permanent embargo

Exploiting Residual Edge Information in Deep Fully Convolutional Neural Networks For Retinal Vessel Segmentation

conference contribution
posted on 2020-01-01, 00:00 authored by Tariq Khan, Syed S Naqvi, Muhammad Arsalan, Muhamamd Aurangzeb Khan, Haroon A Khan, Adnan Haider
Accurate automatic segmentation of the retinal vessels is crucial for early detection and diagnosis of vision-threatening retinal diseases. A new supervised method using a variant of the fully convolutional neural network is pro-posed with the advantages of reduced hyper-parameters, reduced computational/memory requirements, and robust performance in capturing tiny vessel information. The fully convolutional architectures previously employed for vessel segmentation have multiple tunable hyperparameters and difficulty in end-to-end training due to their decoder structure. We resolve this problem by sharing information from the encoder for upsampling at the decoder stage, resulting in a significantly smaller number of tunable parameters and low computational overhead at the train and test stages. Moreover, the need for pre- and post-processing steps are eradicated. Consequently, the detection accuracy is significantly improved with scores of 0.9620, 0.9623, and 0.9620 on DRIVE, STARE, and CHASE_DB1 datasets respectively.

History

Event

IEEE Computational Intelligence Society. Conference (2020 : Online from Glasgow, Scotland)

Pagination

1 - 8

Publisher

IEEE

Location

Online from Glasgow, Scotland

Place of publication

Piscataway, N.J.

Start date

2020-07-19

End date

2020-07-24

ISBN-13

978-1-7281-6926-2

Language

eng

Publication classification

E1 Full written paper - refereed

Title of proceedings

IJCNN 2020 : Proceedings of the 2020 International Joint Conference on Neural Networks

Usage metrics

Categories

Keywords

Exports