posted on 2009-01-01, 00:00authored byJun Zhang, L Ye
In conventional content based image retrieval (CBIR) employing relevance feedback, one implicit assumption is that both pure positive and negative examples are available. However it is not always true in the practical applications of CBIR. In this paper, we address a new problem of image retrieval using several unclean positive examples, named noisy query, in which some mislabeled images or weak relevant images present. The proposed image retrieval scheme measures the image similarity by combining multiple feature distances. Incorporating data cleaning and noise tolerant classifier, a twostep strategy is proposed to handle noisy positive examples. Experiments carried out on a subset of Corel image collection show that the proposed scheme outperforms the competing image retrieval schemes.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
2009, IEEE
Title of proceedings
ICME 2009 : Proceedings of the 2009 IEEE International Conference on Multimedia and Expo