Medical outcomes are inexorably linked to patient illness and clinical interventions. Interventions change the course of disease, crucially determining outcome. Traditional outcome prediction models build a single classifier by augmenting interventions with disease information. Interventions, however, differentially affect prognosis, thus a single prediction rule may not suffice to capture variations. Interventions also evolve over time as more advanced interventions replace older ones. To this end, we propose a Bayesian nonparametric, supervised framework that models a set of intervention groups through a mixture distribution building a separate prediction rule for each group, and allows the mixture distribution to change with time. This is achieved by using a hierarchical Dirichlet process mixture model over the interventions. The outcome is then modeled as conditional on both the latent grouping and the disease information through a Bayesian logistic regression. Experiments on synthetic and medical cohorts for 30-day readmission prediction demonstrate the superiority of the proposed model over clinical and data mining baselines.