posted on 2002-01-01, 00:00authored byGang LiGang Li, Honghua Dai, Yiqing Tu
Determining the causal structure of a domain is a key task in the area of Data Mining and Knowledge Discovery.The algorithm proposed by Wallace et al. [15] has demonstrated its strong ability in discovering Linear Causal Models from given data sets. However, some experiments showed that this algorithm experienced difficulty in discovering linear relations with small deviation, and it occasionally gives a negative message length, which should not be allowed. In this paper, a more efficient and precise MML encoding scheme is proposed to describe the model structure and the nodes in a Linear Causal Model. The estimation of different parameters is also derived. Empirical results show that the new algorithm outperformed the previous MML-based algorithm in terms of both speed and precision.
History
Pagination
274 - 281
Location
Maebishi-shi, Japan
Open access
Yes
Start date
2002-12-09
End date
2002-12-12
ISBN-13
9780769517544
ISBN-10
0769517544
Language
eng
Publication classification
E1 Full written paper - refereed; E Conference publication
Copyright notice
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.