posted on 2010-01-01, 00:00authored byY Huang, Jun Zhang, Y Zhao, D Ma
Due to the huge growth of the World Wide Web, medical images are now available in large numbers in online repositories, and there exists the need to retrieval the images through automatically extracting visual information of the medical images, which is commonly known as content-based image retrieval (CBIR). Since each feature extracted from images just characterizes certain aspect of image content, multiple features are necessarily employed to improve the retrieval performance. Meanwhile, experiments demonstrate that a special feature is not equally important for different image queries. Most of existed feature fusion methods for image retrieval only utilize query independent feature fusion or rely on explicit user weighting. In this paper, we present a novel query dependent feature fusion method for medical image retrieval based on one class support vector machine. Having considered that a special feature is not equally important for different image queries, the proposed query dependent feature fusion method can learn different feature fusion models for different image queries only based on multiply image samples provided by the user, and the learned feature fusion models can reflect the different importances of a special feature for different image queries. The experimental results on the IRMA medical image collection demonstrate that the proposed method can improve the retrieval performance effectively and can outperform existed feature fusion methods for image retrieval.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
2010, IEEE
Editor/Contributor(s)
P Kellenberger
Title of proceedings
ICCSE : 13th IEEE International Conference on Computational Science and Engineering