File(s) not publicly available
Mining negative rules using GRD
Version 2 2024-06-05, 04:39Version 2 2024-06-05, 04:39
Version 1 2019-07-18, 13:57Version 1 2019-07-18, 13:57
conference contribution
posted on 2024-06-05, 04:39 authored by Dhananjay ThiruvadyDhananjay Thiruvady, GI Webb© Springer-Verlag Berlin Heidelberg 2004. GRD is an algorithm for k-most interesting rule discovery. In contrast to association rule discovery, GRD does not require the use of a minimum support constraint. Rather, the user must specify a measure of interestingness and the number of rules sought (k). This paper reports efficient techniques to extend GRD to support mining of negative rules. We demonstrate that the new approach provides tractable discovery of both negative and positive rules.
History
Volume
3056Pagination
161-165Location
Sydney, N.S.W.Publisher DOI
Start date
2004-05-26End date
2004-05-28ISSN
0302-9743eISSN
1611-3349ISBN-13
9783540220640ISBN-10
354022064XLanguage
engPublication classification
E1.1 Full written paper - refereedTitle of proceedings
Advances in knowledge discovery and data mining : 8th Pacific-Asia conference, PAKDD 2004, Sydney, Australia, May 26-28, 2004 : proceedingsEvent
Pacific-Asia Conference on Knowledge Discovery and Data Mining (8th : 2004 : Sydney, N.S.W.)Publisher
SpringerPlace of publication
Berlin, GermanySeries
Lecture Notes in Computer Science ; 3056.Usage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC