Deakin University
Browse

Modeling user preferences on spatiotemporal topics for point-of-interest recommendation

Version 2 2024-06-04, 00:07
Version 1 2017-11-20, 18:54
conference contribution
posted on 2024-06-04, 00:07 authored by S Yang, Guangyan HuangGuangyan Huang, Y Xiang, X Zhou, CH Chi
With the development of the location-based social networks (LBSNs) and the popular of mobile devices, a plenty of user's check-in data accumulated enough to enable personalized Point-of-Interest recommendations services. In this paper, we propose a scheme of modeling user's preferences on spatiotemporal topics (UPOST scheme) for accurate individualized POI recommendation. In the UPOST scheme, we discover temporal topics from semantic locations (i.e., people's description words for a location) to learn users' preferences. UPOST infers user's preference for different types of places during different periods by learning the spatiotemporal topics from the historical semantic locations of users. We have developed two algorithms under the UPOST scheme: The time division LDA algorithm (TDLDA) and the time adaptive topic discovery algorithm (TATD). In TDLDA, we divide the check-in dataset into different time segments and use one LDA for one segment. Then we improve TDLDA further by developing a new TATD algorithm to discover spatiotemporal topics. The experimental results demonstrate the effectiveness of our UPOST scheme, both TDLDA and TATD outperform the counterpart method that do not consider semantic locations.

History

Pagination

204-211

Location

Honolulu, Hawaii

Start date

2017-06-25

End date

2017-06-30

ISBN-13

9781538620052

Language

eng

Publication classification

E Conference publication, E1 Full written paper - refereed

Copyright notice

2017, IEEE

Title of proceedings

SCC 2017 : Proceedings of the IEEE 14th International Conference on Services Computing 2017

Event

International Conference on Services Computing (2017 : Honolulu, Hawaii)

Publisher

IEEE

Place of publication

Piscataway, N.J.

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC