Modelling regular and estimable inverse demand systems : a distance function approach
conference contribution
posted on 2002-01-01, 00:00authored byK McLaren, G Wong
To be useful for policy simulation in the current climate of rapid structural change, inverse demand systems must remain regular over substanstial variations in quantities. The distance function is a convenient vehicle for generating such systems. It also allows convenient imposition of prior ideas about the structure of preferences required for realistic policy work. While the distance function directly yields Hicksian inverse demand functions via the Shepard-Hanoch lemma, they are usually explicit in the unobservable level of utility (u), but lack a closed-form representation in terms of the observable variables. Note however that the unobservability of u need not hinder estimation. A simple one-dimensional numerical inversion allows the estimation of the distance function via the parameters of the implied Marshallian inverse demand functions. This paper develops the formal theory for using distance functions in this context, and reports on initial trials on the operational feasibility of the method.
History
Event
Meeting of the Canadian Economics Association (36th : 2002 : Calgary, Alberta)
Publisher
Canadian Economics Association
Location
Calgary, Alberta
Place of publication
Calgary, Alberta
Start date
2002-05-30
End date
2002-06-02
Language
eng
Publication classification
E2 Full written paper - non-refereed / Abstract reviewed
Copyright notice
2002, Canadian Economics Association
Title of proceedings
CEA 2002 : Program of the 36th Annual Meeting of the Canadian Economics Association