The majority of multi-class pattern classification techniques are proposed for learning from balanced datasets. However, in several real-world domains, the datasets have imbalanced data distribution, where some classes of data may have few training examples compared for other classes. In this paper we present our research in learning from imbalanced multi-class data and propose a new approach, named Multi-IM, to deal with this problem. Multi-IM derives its fundamentals from the probabilistic relational technique (PRMs-IM), designed for learning from imbalanced relational data for the two-class problem. Multi-IM extends PRMs-IM to a generalized framework for multi-class imbalanced learning for both relational and non-relational domains.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
2010, IEEE
Editor/Contributor(s)
J Guerrero
Title of proceedings
ICPR 2010 : Proceedings : 20th International Conference on Pattern Recognition