Multi-objective job shop scheduling using i-NSGA-III
Version 2 2025-05-11, 13:15Version 2 2025-05-11, 13:15
Version 1 2018-09-26, 15:44Version 1 2018-09-26, 15:44
conference contribution
posted on 2025-05-11, 13:15authored byB Khan, S Hanoun, M Johnstone, CP Lim, D Creighton, S Nahavandi
The complexity of job shop scheduling problems is related to many factors, such as a large number of jobs, the number of objectives and constraints. Evolutionary algorithms are a natural fit to search for the optimum schedules in complex job shop scheduling problems with multiple objectives. This paper extends the authors' i-NSGA-In algorithm to tackle a manufacturing job shop scheduling problem with multiple objectives. One of the complex objectives is to pair jobs with similar properties to increase the overall cost savings. The genetic operators in i-NSGA-III are replaced with novel problem-specific crossover and mutation operators. The proposed approach is validated by comparing against the enumeration technique for problems with 5 to 10 jobs. Unlike the enumeration technique, the proposed methodology shows competence in terms of computation time and ability to schedule a large number of jobs with a high number of objectives. Further comparisons with NSGA-III demonstrate the superiority of i-NSGA-III for problems with 30, 40, and 50 jobs.
History
Pagination
1-5
Location
Vancouver, Canada
Start date
2018-04-24
End date
2018-04-26
ISBN-13
9781538636640
Language
eng
Publication classification
E1 Full written paper - refereed
Copyright notice
2018, IEEE
Editor/Contributor(s)
[Unknown]
Title of proceedings
SysCon 2018 : Proceedings of the 12th Annual IEEE International Systems Conference
Event
IEEE Systems Council. Conference (12th : 2018 : Vancouver, Canada)