Deakin University
Browse

File(s) under permanent embargo

Nonparametric discovery of learning patterns and autism subgroups from therapeutic data

Version 2 2024-06-03, 16:52
Version 1 2015-04-15, 10:16
conference contribution
posted on 2024-06-03, 16:52 authored by P Vellanki, T Duong, Svetha VenkateshSvetha Venkatesh, D Phung
Autism Spectrum Disorder (ASD) is growing at a staggering rate, but, little is known about the cause of this condition. Inferring learning patterns from therapeutic performance data, and subsequently clustering ASD children into subgroups, is important to understand this domain, and more importantly to inform evidence-based intervention. However, this data-driven task was difficult in the past due to insufficiency of data to perform reliable analysis. For the first time, using data from a recent application for early intervention in autism (TOBY Play pad), whose download count is now exceeding 4500, we present in this paper the automatic discovery of learning patterns across 32 skills in sensory, imitation and language. We use unsupervised learning methods for this task, but a notorious problem with existing methods is the correct specification of number of patterns in advance, which in our case is even more difficult due to complexity of the data. To this end, we appeal to recent Bayesian nonparametric methods, in particular the use of Bayesian Nonparametric Factor Analysis. This model uses Indian Buffet Process (IBP) as prior on a binary matrix of infinite columns to allocate groups of intervention skills to children. The optimal number of learning patterns as well as subgroup assignments are inferred automatically from data. Our experimental results follow an exploratory approach, present different newly discovered learning patterns. To provide quantitative results, we also report the clustering evaluation against K-means and Nonnegative matrix factorization (NMF). In addition to the novelty of this new problem, we were able to demonstrate the suitability of Bayesian nonparametric models over parametric rivals.

History

Pagination

1828-1833

Location

Stockholm, Sweden

Start date

2014-08-24

End date

2014-08-28

ISSN

1051-4651

ISBN-13

9781479952083

Language

eng

Publication classification

E1 Full written paper - refereed, E Conference publication

Copyright notice

2014, IEEE

Editor/Contributor(s)

[Unknown]

Title of proceedings

ICPR 2014 : Proceedings of the 22nd International Conference on Pattern Recognition

Event

Pattern Recognition. Conference (22nd : 2014 : Stockholm, Sweden)

Publisher

IEEE

Place of publication

Piscataway, N.J.

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC