Deakin University
Browse

File(s) not publicly available

On dynamic scene geometry for view-invariant action matching

conference contribution
posted on 2023-02-07, 23:58 authored by Anwaar-ul-Haq, I Gondal, Manzur MurshedManzur Murshed
Variation in viewpoints poses significant challenges to action recognition. One popular way of encoding view-invariant action representation is based on the exploitation of epipolar geometry between different views of the same action. Majority of representative work considers detection of landmark points and their tracking by assuming that motion trajectories for all landmark points on human body are available throughout the course of an action. Unfortunately, due to occlusion and noise, detection and tracking of these landmarks is not always robust. To facilitate it, some of the work assumes that such trajectories are manually marked which is a clear drawback and lacks automation introduced by computer vision. In this paper, we address this problem by proposing view invariant action matching score based on epipolar geometry between actor silhouettes, without tracking and explicit point correspondences. In addition, we explore multi-body epipolar constraint which facilitates to work on original action volumes without any pre-processing. We show that multi-body fundamental matrix captures the geometry of dynamic action scenes and helps devising an action matching score across different views without any prior segmentation of actors. Extensive experimentation on challenging view invariant action datasets shows that our approach not only removes long standing assumptions but also achieves significant improvement in recognition accuracy and retrieval. © 2011 IEEE.

History

Pagination

3369-3376

ISSN

1063-6919

ISBN-13

9781457703942

Title of proceedings

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC