The inclusion-exclusion integral is a generalization of the discrete Choquet integral, defined with respect to a fuzzy measure and an interaction operator that replaces the minimum function in the Choquet integral’s Möbius representation. While in general this means that the resulting operator can be non-monotone, we have previously proposed using averaging aggregation functions for the interaction component, which under certain requirements can produce non-linear, but still averaging, operators. Here we consider how the orness of the overall function changes depending on the chosen component functions and hence propose a simplified calculation for approximating the orness of an averaging inclusion-exclusion integral.