PIE-QG: Paraphrased Information Extraction for Unsupervised Question Generation from Small Corpora
Version 3 2024-10-19, 11:09Version 3 2024-10-19, 11:09
Version 2 2024-06-04, 15:19Version 2 2024-06-04, 15:19
Version 1 2023-03-03, 05:10Version 1 2023-03-03, 05:10
conference contribution
posted on 2024-10-19, 11:09 authored by Dinesh NagumothuDinesh Nagumothu, Bahadorreza OfoghiBahadorreza Ofoghi, Guangyan HuangGuangyan Huang, Peter EklundPIE-QG: Paraphrased Information Extraction for Unsupervised Question Generation from Small Corpora
History
Pagination
350-359Location
Abu Dhabi, United Arab EmiratesStart date
2022-12-07End date
2022-12-08Language
engPublication classification
E1 Full written paper - refereedTitle of proceedings
CoNLL 2022 : Proceedings of the 26th Conference on Computational Natural Language LearningEvent
Computational Natural Language Learning. Conference (2022 : 26th : Abu Dhabi, United Arab Emirates)Publisher
Association for Computational LinguisticsPlace of publication
[Abu Dhabi, United Arab Emirates}Publication URL
Usage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC