In this paper, we present techniques for inverting sparse, symmetric and positive definite matrices on parallel and distributed computers. We propose two algorithms, one for SIMD implementation and the other for MIMD implementation. These algorithms are modified versions of Gaussian elimination and they take into account the sparseness of the matrix. Our algorithms perform better than the general parallel Gaussian elimination algorithm. In order to demonstrate the usefulness of our technique, we implemented the snake problem using our sparse matrix algorithm. Our studies reveal that the proposed sparse matrix inversion algorithm significantly reduces the time taken for obtaining the solution of the snake problem. In this paper, we present the results of our experimental work.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
1996, IEEE
Title of proceedings
ICAPP 1996 : IEEE International Conference on Algorithms and Architectures for Parallel Processing