In this paper, we present a system for pedestrian detection involving scenes captured by mobile bus surveillance cameras in busy city streets. Our approach integrates scene localization, foreground and background separation, and pedestrian detection modules into a unified detection framework. The scene localization module performs a two stage clustering of the video data. In the first stage, SIFT Homography is applied to cluster frames in terms of their structural similarities and second stage further clusters these aligned frames in terms of lighting. This produces clusters of images which are differential in viewpoint and lighting. A kernel density estimation (KDE) method for colour and gradient foreground-background separation are then used to construct background model for each image cluster which is subsequently used to detect all foreground pixels. Finally, using a hierarchical template matching approach, pedestrians can be identified. We have tested our system on a set of real bus video datasets and the experimental results verify that our system works well in practice.
History
Pagination
726 - 732
Location
Hanoi, Vietnam
Open access
Yes
Start date
2008-12-17
End date
2008-12-20
ISBN-13
9781424422869
ISBN-10
1424422868
Language
eng
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
2008, IEEE
Title of proceedings
ICARCV 2008 : Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision