This study aims at developing abstract metamodels for approximating highly nonlinear relationships within a metal casting plant. Metal casting product quality nonlinearly depends on many controllable and uncontrollable factors. For improving the productivity of the system, it is vital for operation planners to predict in advance the amount of high quality products. Neural networks metamodels are developed and applied in this study for predicting the amount of saleable products. Training of metamodels is done using the Levenberg-Marquardt and Bayesian learning methods. Statistical measures are calculated for the developed metamodels over a grid of neural network structures. Demonstrated results indicate that Bayesian-based neural network metamodels outperform the Levenberg-Marquardt-based metamodels in terms of both prediction accuracy and robustness to the metamodel complexity. In contrast, the latter metamodels are computationally less expensive and generate the results more quickly.
History
Event
IEEE International Conference on Control, Automation, Robotics & Vision (11th : 2010 : Singapore)
Pagination
2018 - 2023
Publisher
IEEE
Location
Singapore
Place of publication
Piscataway, N.J.
Start date
2010-12-07
End date
2010-12-10
Language
eng
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1 Full written paper - refereed
Copyright notice
2010, IEEE
Title of proceedings
ICARCV 2010 : 11th International Conference on Control, Automation, Robotics and Vision