Deakin University
Browse

Protecting Reward Function of Reinforcement Learning via Minimal and Non-catastrophic Adversarial Trajectory

conference contribution
posted on 2021-01-01, 00:00 authored by T Chen, Y Xiang, Y Li, Y Tian, E Tong, W Niu, J Liu, Gang LiGang Li, Q Alfred Chen
Reward functions are critical hyperparameters with commercial values for individual or distributed reinforcement learning (RL), as slightly different reward functions result in significantly different performance. However, existing inverse reinforcement learning (IRL) methods can be utilized to approximate reward functions just based on collected expert trajectories through observing. Thus, in the real RL process, how to generate a polluted trajectory and perform an adversarial attack on IRL for protecting reward functions has become the key issue. Meanwhile, considering the actual RL cost, generated adversarial trajectories should be minimal and non-catastrophic for ensuring normal RL performance. In this work, we propose a novel approach to craft adversarial trajectories disguised as expert ones, for decreasing the IRL performance and realize the anti-IRL ability. Firstly, we design a reward clustering-based metric to integrate both advantages of fine-and coarse-grained IRL assessment, including expected value difference (EVD) and mean reward loss (MRL). Further, based on such metric, we explore an adversarial attack based on agglomerative nesting algorithm (AGNES) clustering and determine targeted states as starting states for reward perturbation. Then we employ the intrinsic fear model to predict the probability of imminent catastrophe, supporting to generate non-catastrophic adversarial trajectories. Extensive experiments of 7 state-of-The-Art IRL algorithms are implemented on the Object World benchmark, demonstrating the capability of our proposed approach in (a) decreasing the IRL performance and (b) having minimal and non-catastrophic adversarial trajectories.

History

Volume

2021-September

Pagination

299-309

Location

Chicago, Ill.

Start date

2021-09-20

End date

2021-09-23

ISSN

1060-9857

eISSN

2575-8462

ISBN-13

9781665438193

Language

English

Publication classification

E1 Full written paper - refereed

Title of proceedings

SRDS 2021: Proceedings of the 40th Reliable Distributed Systems 2021 International Symposium

Event

IEEE Reliable Distributed Systems : Symposium (2021 : Chicago, Ill.)

Publisher

IEEE

Place of publication

Piscataway, N.J.

Series

Symposium on Reliable Distributed Systems Proceedings