Deakin University

File(s) under permanent embargo

Providing fairer resource allocation for multi-tenant cloud-based systems

conference contribution
posted on 2015-01-01, 00:00 authored by J Ru, John Grundy, Y Yang, J Keung, L Hao
A fundamental premise in cloud computing is trying to provide a more sophisticated computing resource sharing capability. In order to provide better allocation, the Dominant Resource Fairness (DRF) approach has been developed to address the "fair resource allocation problem" at the application layer for multi-tenant cloud applications. Nevertheless conventional DRF only considers the interplay of CPU and memory, which may result in over allocation of resources to one tenant's application to the detriment of others. In this paper, we propose an improved DRF algorithm with 3-dimensional demand vector to support disk resources as the third dominant shared resource, enhancing fairer resource sharing. Our technique is integrated with LINUX 'group' controls resource utilisation and realises data isolation to avoid undesirable interactions between co-located tasks. Our method ensures all tenants receive system resources fairly, which improves overall utilisation and throughput as well as reducing traffic in an over-crowded system. We evaluate the performance of different types of workload using different algorithms and compare ours to the default algorithm. Results show an increase of 15% resource utilisation and a reduction of 59% completion time on average, indicating that our DRF algorithm provides a better, smoother, fairer high-performance resource allocation scheme for both continuous workloads and batch jobs.



IEEE Cloud Computing Technology and Science. International Conference (7th: 2015: Vancouver, B.C.)


306 - 313




Vancouver, B.C.

Place of publication

Piscataway, N.J.

Start date


End date






Publication classification

E Conference publication; E1.1 Full written paper - refereed

Copyright notice

2015, IEEE



Title of proceedings

CloudCom 2015: Proceedings of the IEEE Cloud Computing Technology and Science 2015 International Conference