The recognition of activities from sensory data is important in advanced surveillance systems to enable prediction of high-level goals and intentions of the target under surveillance. The problem is complicated by sensory noise and complex activity spanning large spatial and temporal extents. This paper presents a system for recognising high-level human activities from multi-camera video data in complex spatial environments. The Abstract Hidden Markov mEmory Model (AHMEM) is used to deal with noise and scalability The AHMEM is an extension of the Abstract Hidden Markov Model (AHMM) that allows us to represent a richer class of both state-dependent and context-free behaviours. The model also supports integration with low-level sensory models and efficient probabilistic inference. We present experimental results showing the ability of the system to perform real-time monitoring and recognition of complex behaviours of people from observing their trajectories within a real, complex indoor environment.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
2003, IEEE
Title of proceedings
CVPR 2003 : Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition