Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization
Version 2 2024-06-02, 14:49Version 2 2024-06-02, 14:49
Version 1 2023-07-18, 05:13Version 1 2023-07-18, 05:13
conference contribution
posted on 2024-06-02, 14:49 authored by H Tran-The, Sunil GuptaSunil Gupta, Santu RanaSantu Rana, Svetha VenkateshSvetha VenkateshRegret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization
History
Volume
151Pagination
8715-8737Location
Virtual ConferenceLink to full text
Start date
2022-03-28End date
2022-03-30ISSN
2640-3498eISSN
2640-3498Language
EnglishPublication classification
E1 Full written paper - refereedEditor/Contributor(s)
Camps-Valls G, Ruiz FJR, Valera ITitle of proceedings
AISTATS 2022 : Proceedings of the 25th International Conference on Artificial Intelligence and StatisticsEvent
Artificial Intelligence and Statistics. Conference (2022 : Virtual Conference)Publisher
JMLR-JOURNAL MACHINE LEARNING RESEARCHPlace of publication
Cambridge, Mass.Series
Proceedings of Machine Learning ResearchPublication URL
Usage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC